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Studies on mechanisms of radioprotection are leading to a more rational use of protectors for
different applications. In considering the feasibility of radioprotectors that act through various
mechanisms, it is necessary to distinguish the application needed, e.g., protection against
accidental external or internal exposures; acute high-dose radiation injury or low doses over a long
period, high-LET radiation exposures during space flight, and protection of normal tissues of cancer
patients who are undergoing therapy. Protectors generally are classified as either sulfhydryl
compounds, other antioxidants, or receptor-mediated agents (e.g., bioactive lipids, cytokines, and
growth factors). This review focuses on comparative radioprotection and toxicity studies in mice
using the most effective phosphorothioate agents designated as WR-compounds and other
classes of protectors. The superiority of phosphorothioates (WR-2721, WR-1 51327) as

radioprotectors appears to be related to their high affinity for DNA and the similarity in structure of
phosphorothioate metabolites to polyamines, and their effects on processes related to DNA
structure and synthesis. Drug tolerance levels are available from clinical trials using WR-2721
(amifostine) and provide a basis for discussions of the disadvantages of phosphorothioate
administration outside a clinical setting. In this regard, arguments are presented against the current
use of WR-2721 by Department of Energy personnel for planned radiation exposures during
emergencies. Future research may demonstrate, however, that pharmacologic agents could be
useful in accident scenarios, especially when used in combination with therapeutic measures.
Assessment of potential prophylactic measures should consider compatibility with therapeutic
measures currently in use or ones that might be available in the future for the treatment of
radiation injuries. These include antiemetics, purified stem cells, granulocyte colony-stimulating
factor, and other cytokines. Their potential usefulness against radiation-induced mutagenesis of
pre- and postexposure administration of phosphorothioates and other classes of protectors should
be corroborated in humans. Environ Health Perspect 1 05(Suppl 6):1473-1478 (1997)
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Development of reported in 1949 that cysteine, a sulfur-
Radioprotectoms containing amino acid, could protect rats
The first in vivo studies on protection by from a lethal dose of X-rays (1). With the
chemicals against ionizing radiation were nuclear age already a reality, potential
conducted almost 50 years ago. Patt military applications of radioprotective
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chemicals and their use in the event of
nuclear accidents appeared to be a distinct
possibility. From the earliest days of
research, it was also hypothesized that
cancer therapy could be improved by the
use of radioprotectors to protect normal tis-
sue from radiation damage. As research on
radioprotectors developed, it became evi-
dent that studies with these chemicals could
provide important information on mech-
anisms of interaction of radiation and
biomolecules. In the 1950s through a pro-
gram supported by the Atomic Energy
Commission, aminoethylisothiourea was
developed and understanding of sulfur-
containing radioprotectors increased.

From 1959 until 1973, the Walter
Reed Army Institute of Research (WRAIR)
supported an antiradiation drug develop-
ment program, in which more than 4000
compounds were synthesized and screened
in mice (2). From 1979 to 1988, the
WRAIR program was reinstated and its
most significant contribution was develop-
ment of amifostine (WR-2721) and related
phosphorothioates (3). Phosphorylated
compounds serve as pro-drugs for the
active free aminothiols. During this period,
WR-2721 was introduced into cancer
clinical trials to study protection against
normal tissue damage caused by radiother-
apy and various chemotherapeutic agents
(4,5). To date, the U.S. military has not
approved for use or further development
WR-2721 or any agent that might protect
against radiation-induced lethality. Related
research has been carried out in the past in
the former Soviet Union (6) and other
Warsaw Pact countries. A thorough review
and comparison of the many drugs studied
under the competing programs have not
yet been done.

Although most older programs, includ-
ing one at the National Institutes of
Health from 1980 to 1983 (7), empha-
sized drug screening in experimental ani-
mals, during recent years studies have
emphasized a shift toward biological
mechanisms and agents. During the 1980s
until the present, there have been a variety
of diverse smaller research programs char-
acterized by the ascendancy of biotechnol-
ogy and new knowledge related to cellular
radiation effects, e.g., cellular sensitivity,
cell cycle, and cell death. Current research
is also leading to an increased understand-
ing of the molecular mechanisms of protec-
tion by WR-compounds (8-10). Certain
chemical and biological protectors may
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lead to the same result, because different
biological end points (cell transformation,
loss of proliferative capacity, apoptotic
death, etc.) may arise from radiation damage
at different cell targets. Therefore, clear dif-
ferences between chemical and biological
mechanisms are not always evident. The
information evolving from the larger
genome project predictably will lead to bet-
ter radioprotectors through improved under-
standing of DNA structure, function, and
repair, radiation-induced cancer, and identi-
fication of radiation-sensitive individuals.
With the successful development of products
by the biotechnology industry, there is also a
shift in emphasis from radioprotectors that
need to be administered before radiation
exposure to treatments, such as cell growth
factors, that can result in increased survival.
Granulocyte colony-stimulating factor
(G-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) have
been recommended for use in treatment of
accidental radiation injuries (11,12). A
number of reviews and books on radiopro-
tection have been published that include
discussions from diverse viewpoints of
classes of protectors and their mechanisms
of action (13-21).

Comparison of Efficacy
and Toxicity of
Radioprotective Agents
The most widely used and preferred
procedure for comparing the efficacy of
protective agents in experimental animals
has been to determine the dose-reduction
factor or dose-modifying factor (DMF).
DMFs have been obtained by irradiating
mice with and without administered agents
at a range of exposures. The DMF for
30-day survival quantifies protection of the
hematopoietic system (7,22). With the loss
of hematopoietic stem cells, death follows
from infection, hemorrhage, and anemia.
Some protection against the hematopoietic
syndrome, a result of damage to bone mar-
row stem cells, has been shown in rodents
using a variety of agents that provide pro-
tection, repair, or regeneration. These
include the many agents discussed in the
reviews cited above, such agents as: thiols,
other antioxidants, vitamins, enzymes and
synthetic compounds that have enzymatic
activity, nitroxides, nitrones, immunomod-
ulators, endotoxin derivatives, growth fac-
tors, xanthine and adenosine derivatives,
eicosanoids, calcium antagonists, and
polyamines. With the availability of radio-
protective agents and biological factors for
treatment of the hematopoietic syndrome,

there is a renewed interest in how to
protect against the gastrointestinal (GI)
syndrome (23). GI death generally is
assessed by determining survival at 6 or 7
days after comparatively high doses of
whole-body irradiation (7,22,23).

The most useful preclinical studies
relate protective effects to toxicity in the
same animal model. For example, drugs are
administered at one-fourth or one-half the
maximum tolerated dose (MTD), where
the MTD is approximately equal to the
dose that causes death in 10% of the mice
of a specific strain (7). Also useful in com-
paring agents is determination of protection
based on doses that cause other measurable
toxicities such as behavioral toxicity or per-
formance decrement (24,25). Automated
monitoring of spontaneous locomotor
activity is one of several approaches for esti-
mating behavioral toxicity in irradiated
and/or drug-treated mice (26,27).

Phosphorothioates
Early studies have reported very large
DMFs in mice treated with WR-2721 and
other phosphorothioates, but the drug
doses used were unreasonably high (22).
Nevertheless, the greatest protection
observed in experimental animals has been
obtained with phosphorothioates such as
WR-2721, WR-3689, and WR-151327
(7), with the possible exception of agents
that induce hypoxia as their main mode of
action. The time of administration relative
to radiation exposure is critical and the effi-
cacy of the compounds is strongly related
to pharmacokinetic considerations as well
as to radiochemical considerations. For
example, oral administration of WR-2721
is compromised not only by hydrolysis in
the stomach but also because of first-pass
metabolism, which probably has compo-
nents of both gut wall and liver metabo-
lism (28). Intraperitoneal administration at
one-half MTD before mice are exposed to
y-irradiation results in a DMF for 30-day
survival of 2.0 to 2.2 for WR-2721,
WR-3689, or WR-151327 (7,29,30). At a
more realistic dose of one-fourth MTD
(e.g., 200 mg/kg for WR-2721), the DMF
is 1.6 to 1.8 for any of the three drugs
(29-34). At one-fourth MTD, decreases in
locomotor activity are still observed. The
decrease in locomotor activity caused by
phosphorothioates may be due to diverse
pharmacologic mechanisms, including
hypotension (35), not to hypothermia.
The decrease in locomotor activity can be
mitigated by diverse agents (e.g., caffeine,
theophylline, propranolol), while these

agents either augment or do not affect
radioprotection by WR-2721 (26,30,
32-34). The behavioral toxicity of phos-
phorothioates has been shown by other
assays in different species, including
decrements in learned tasks (36-38).

Phosphorothioates administered ip
provide substantial protection against acute
intestinal radiation injury; the DMF for GI
death after treatment with most phos-
phorothioates is 0.7 to 0.8 the DMF for
hematopoietic death (23). WR-2721 and
WR-151327 are also effective against neu-
tron exposure (39). When phosphor-
othioates are administered orally to mice,
protection against lethality from y-radiation
exposure decreases compared to survival after
ip or intramuscular administration. The
DMF for protection against 30-day lethality
for oral administration administration of
WR-2721, WR-3689, or WR-151327 at
one-half MTD is 1.3 to 1.5 and at one-
fourth MTD is 1.2 to 1.3 (29,40, unpub-
lished data). WR-151327 is significantly less
toxic when administered orally than is
WR-2721 or WR-3689. However, it is not a
better oral radioprotector than WR-2721 or
WR-3689, because more of the drug must
be administered to mice to obtain the same
level of protection.

WR-2721 and WR-151327 protect
against radiation-induced malignancies in
rodents when they are administered before
radiation exposure (41-43). It is not clear
whether phosphorothioates have an anti-
carcinogenic effect when administered
postirradiation. As early as 1967, genomic
stabilization was proposed as a radiopro-
tective mechanism for aminothiols (44).
More recently, emphasis has been placed
on how these agents might affect DNA
repair processes (45,46). Grdina and
co-workers have effectively demonstrated
how WR-compounds influence post-
irradiation processes including antimuta-
genic effects (47,48). The structural
similarity of the metabolites of WR-com-
pounds (e.g., WR-1065, WR-151326, and
their disulfides) to endogenous polyamines
suggests that they may interact with DNA
similarly and that they may influence
DNA protection, repair, and synthetic
processes (8-10,34,48).

Other Sulfliydryl Compounds
and Antioxidants
Many other sulfur-containing compounds
as well as synthetic antioxidants with
nonsulfydryl moieties have been studied
for their radioprotective effect. Maximum
protection measured by 30-day lethality
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generally is lower than that afforded by
phosphorothioates. Because of the low tox-
icity and substantial history of human use
for some of these agents, for example,
N-acetylcysteine, diethyldithiocarbamate,
2-mercaptopropionylglycine (MPG),
nimodipine, propranolol (16,32,49,50),
further studies in specific exposure situa-
tions are warranted. The phosphoro-
thioates are effective against lethality only
when they are administered before radia-
tion exposure and the time window for
protection is short. Several other thiols,
however, have been reported to provide
some protection when administered after
radiation exposure, e.g., MPG (50). Some
naturally occurring radioprotectors, e.g.,
vitamins E, A, and C, superoxide dismu-
tase, minerals that mimic or induce activity
of endogenous antioxidant systems (16),
protect only against lower doses of radia-
tion (DMF of 1.1-1.2) but have low toxic-
ity, possible increased benefits from longer
use, and a wider window of protection.
The lower degree of protection by these
agents compared to those of synthetic
agents may be related to modulation of
later reactions, for example interaction of
radiation-induced radicals of biomolecules
with reactive oxygen species evolved during
normal cellular processes. Protection
against lethality has also been reported for
postirradiation administration of natural
antioxidants such as superoxide dismutase,
selenomethionine, vitamin A, and vitamin
E (16,31,51-53). A number of synthetic
and natural antioxidants such as vitamin E,
superoxide dismutase, MPG, and ginko
biloba exhibit antimutagenic properties
when administered after radiation exposure
(50,53-55); other studies also suggest that
antioxidant vitamins and minerals can
modulate radiation-induced carcinogenesis
(56,57). If ongoing chemoprevention. trials
(58) show that antioxidants (vitamin E,
1-carotene, selenium compounds) have a
general protective effect against cancer
development, it appears reasonable to
assume that they would be effective against
radiation-induced cancer in humans.

Receptor-mediated Protectors
Identification of specific receptors for
many radioprotectors will provide a greater
understanding of the mechanisms of action
of radioprotective agents at the cellular
level. This diverse class of radioprotective
agents, which has known receptors, has
many subclasses and includes bioactive
lipids, naturally occurring peptides, and
some synthetic compounds (30). Of the

compounds acting through receptor
mediation, the most protective appear to
be natural and synthetic eicosanoids (59).
Protection against lethality, in general, is
slightly lower than that afforded by phos-
phorothioates, and like phosphorothioates,
eicosanoids are effective only when admini-
stered before radiation exposure. The
prostaglandin analog misoprostol appears
to provide relatively greater protection
against GI injury than against hematopoi-
etic injury (23). Although the mechanism
of action of misoprostol is probably very
different from that of phosphorothioates, it
also has been reported to protect against
radiation-induced oncogenic transforma-
tion (60). Eicosanoids and other biological
protectors exhibit behavioral toxicity at
least as great as that of chemical protectors
such as phosphorothioates (26), therefore
relative to toxicity, protection generally is
lower. The use of eicosanoids for radiopro-
tection outside a clinical setting probably
will be hampered by their extensive physio-
logic effects at low doses, for example,
misoprostol has strong abortifacient prop-
erties. However, the use of bioactive lipids
as protectors (or inhibition of their synthe-
sis) in the setting of cancer treatment may
have promise because of exploitable differ-
ences in eicosanoid metabolism between
normal and tumor tissue.

Studies on protection by immuno-
modulators date from reports indicating
that endotoxin provides protection when
administered 20 to 24 hr before irra-
diation and shortly before or after expo-
sure (61). In general, immunotherapeutic
agents, cytokines, or growth factors
provide a large window of protection,
although protection against lethality is
lower (DMF = 1.2-1.3) than that afforded
by phosphorothioates. Administration of
cytokines and growth factors after radia-
tion exposure combined with preirradia-
tion administration of phosphorothioates
appears synergistically to reduce radiation
damage (30,62). The possible mechanisms
of protection by cytokines have been
reviewed by Neta et al. and Neta (63,64).
The potential utility of cytokines and
growth factors as therapeutic agents and/or
protective agents is great, and future
studies should lead to specific agents to
treat specific tissue damage (12).
Applications of
Radioprotectors in
Various Scenarios
In considering the feasibility of radio-
protectors, it is necessary to distinguish

the application desired. For example,
uncontrolled exposure to radiation from
nuclear weapons, space, or accidents pre-
sents challenges unlike those encountered
in radiotherapy. The requirements for pro-
tecting an astronaut against space radia-
tion would be different taking into
consideration physiological complications
posed by microgravity and potential expo-
sures to high-LET radiation. Lessons
learned from accidents have shown that
benefits can be gained by treatments at dif-
ferent stages in relation to various types of
radiation exposure: blockers (potassium
iodide), chelating agents, internal decontam-
inating agents (Prussian Blue), supportive
therapy (platelets, fluids, antibiotics), colony-
stimulating factors (6,11,12,65).

The problem of toxicity of protectors is
more acute when the intended use is a situa-
tion in which performance is an important
factor. Nausea and vomiting occur in most
patients treated with WR-2721 (4), and use
of effective antiemetics is recommended
(66). Hypotension is a dose-limiting side
effect in patients, and the side effects
observed in rodents treated with WR-2721
may be related to this property (35). The
military requirement for an agent to be
given before radiation exposure emphasizes
performance and preference for a radio-
protector that is effective against the detri-
mental effects on performance of high-dose
radiation. Consequently, a NATO panel has
recommended the use of granisetron, an
antiemetic, which is, in effect, a behavioral
radioprotector. As a 5-hydroxytryptamine-3
receptor antagonist, granisetron ameliorates
radiation-induced emesis (67).

Proposed Use of WR-2721 by
Department ofEnergy Personnel
A consensus conference was held on 15
and 16 August 1996 subsequent to a pro-
posal submitted by U.S. Bioscience
Corporation for the use of Ethyol (amifos-
tine, WR-2721) in planned radiation expo-
sures during emergencies. The conference
was held to produce a document (68) to
advise the Secretary of Energy on the
proposed use of the drug according to the
protocol developed by U.S. Bioscience.
Sixteen attendees approved the statement
and four attendees declined to sign the
recommendation. The consensus group rec-
ommended against current application of
the drug to U.S. Department of Energy
operations and against its prospective use
in radiation accident response (68). Any
consideration for use of Ethyol in future
radiation accident situations.would require
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extensive research and testing demonstrating
dear benefit to emergency workers.

The group's recommendations (68)
were based on the following conclusions.
a) The drug is not currently approved for
such use by the U.S. Food and Drug
Administration. b) Intravenous administra-
tion is problematic (15-min infusion with
preadministration of antiemetic; blood pres-
sure monitored during drug administration)
and other routes and formulations require
further development and evaluation by the
corporation. c) Most emergency situations
require prompt action and there are time
limitations associated with the use of the
drug. d) There remains uncertainty regard-
ing potential side-effects, particularly con-
sidering the conditions of extreme physical
and psychological stress found in emer-
gencies (including use of protective gear).

e) The emergency circumstances when use
of the drug might be considered have not
been defined (potential hazards from U.S.
Department of Energy operations involve
internal deposition and protracted exposures
to radionudides).

At present there is a lack of quantitative
data from clinical studies on phosphoro-
thioates or any other protective agent to per-
form a proper risk-benefit analysis with
respect to their use in emergency scenarios.
Efficacies of suggested doses should be
quantified using measures or biological
markers that allow determination of a DMF
that reflects protection against radiation,
e.g., bone marrow protection. Although
WR-2721 protects irradiated patients from
hematologic toxicity as measured by white
blood cell and platelet count depression
(69,70), phase III trials are needed for more

definitive data. It is unlikely that the toler-
able dose of WR-2721 (740-900 mg/m2)
would provide a DMF for protection against
lethality because of bone marrow damage
greater than 1.2 based on estimates from
pharmacokinetic studies in different species
(71). Comparative analyses of outcomes
derived from preirradiation protector admin-
istration versus treatments, for example, with
G-CSF or GM-CSF, are desirable. Possible
antimutagenic effects of WR-compounds
(47,48) and other agents administered
either before or after radiation exposure
need to be confirmed and quantified within
ongoing clinical trials, e.g., by assessing
mutations at the hprt locus. Similarly, the
potential anticarcinogenic effects of various
agents could be tested in studies in patients
on secondary tumor induction attributable
to radiation treatment.
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